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Objectives

Main Goal

Follow the evolution of breast shape and volume during Radiotherapy.

Related Objectives

1 Find correspondences between breast shapes

2 Model breast deformations using Shape Analysis

3 Suggest a protocol to optimize dose delivery during therapy
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Context: Radiotherapy

Breast cancer is generally treated in 2

steps:

1 Conservative breast surgery or

lumpectomy

2 Breast radiotherapy

Why irradiate after the surgery?

• Insurance to prevent cancer

recurrence

• Can treat undetected in situ

breast cancer

Figure: Breast Radiotherapy image from

[Seo et al., 2019]
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Context: Radiotherapy

Standard protocol:

1 Collect patient information: CT scan / breast volume

2 Define an irradiation protocol (sessions/radiation quantity)

3 Carry out all radiotherapy sessions with defined parameters

Acquisition: Each patient undergoes several examinations

Figure: Data Acquisitions for one patient
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Problem Approach

Emerging concerns

Breasts can deform between irradiation sessions:

• How to define the ROI?

• Must we change the dose delivery?

Main steps

1 Solve the shape matching problem for the consecutive acquisitions.

2 Use the generated matches to model the breast deformation across

therapy.

Pierre Galmiche University of Strasbourg - ICube

Modeling the evolution of breast’s shape and appearance during radiotherapy: Functional Maps 6 / 29



Thesis objectives Shape Matching Problem Functional Maps Conclusion

Problem Approach

Emerging concerns

Breasts can deform between irradiation sessions:

• How to define the ROI?

• Must we change the dose delivery?

Main steps

1 Solve the shape matching problem for the consecutive acquisitions.

2 Use the generated matches to model the breast deformation across

therapy.

Pierre Galmiche University of Strasbourg - ICube

Modeling the evolution of breast’s shape and appearance during radiotherapy: Functional Maps 6 / 29



Thesis objectives Shape Matching Problem Functional Maps Conclusion

Problem Approach

Emerging concerns

Breasts can deform between irradiation sessions:

• How to define the ROI?

• Must we change the dose delivery?

Main steps

1 Solve the shape matching problem for the consecutive acquisitions.

2 Use the generated matches to model the breast deformation across

therapy.

Pierre Galmiche University of Strasbourg - ICube

Modeling the evolution of breast’s shape and appearance during radiotherapy: Functional Maps 6 / 29



Thesis objectives Shape Matching Problem Functional Maps Conclusion

Shape Matching

Objective:

"Given input shapes S1,S2, . . . ,SN , establish a meaningful relation between

their elements." [van Kaick et al., 2010]

Briefly

Figure: Sparse Correspondence of

features points [van Kaick et al., 2010]
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Shape Matching

Objective:

"Given input shapes S1,S2, . . . ,SN , establish a meaningful relation between

their elements." [van Kaick et al., 2010]

=⇒ Very general problem with specific approaches to solve each

sub-problems.

Briefly

Figure: Sparse Correspondence of

features points [van Kaick et al., 2010]
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Shape Matching

Objective:

"Given input shapes S1,S2, . . . ,SN , establish a meaningful relation between

their elements." [van Kaick et al., 2010]

Briefly

Figure: Sparse Correspondence of

features points [van Kaick et al., 2010]

shapes

What is the shape representation?
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Shape Matching

Objective:

"Given input shapes S1,S2, . . . ,SN , establish a meaningful relation between

their elements." [van Kaick et al., 2010]

Briefly

Figure: Sparse Correspondence of

features points [van Kaick et al., 2010]

establish

What approach to find

correspondences?
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Shape Matching

Objective:

"Given input shapes S1,S2, . . . ,SN , establish a meaningful relation between

their elements." [van Kaick et al., 2010]

Briefly

Figure: Sparse Correspondence of

features points [van Kaick et al., 2010]

meaningful

Which correspondence is closer to

our goal?
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Shape Matching

Objective:

"Given input shapes S1,S2, . . . ,SN , establish a meaningful relation between

their elements." [van Kaick et al., 2010]

Briefly

Figure: Sparse Correspondence of

features points [van Kaick et al., 2010]

relation

What is the output representation?

What are its properties?
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Shape Matching Applications

Figure: Possible applications of shape matching [van Kaick et al., 2010]
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Many Methods for many problems

Challenging problems

Figure: Man-made Shapes [van Kaick et al., 2010]
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Many Methods for many problems

Partial Matching

Figure: Partial Matching Example [van Kaick et al., 2010]
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And for the thesis?

Challenges

• ' Partial Matching between CT

acquisitions and textured scans

• Non-rigid registration

• Dense scan acquisitions with

' 300,000 to ' 1,000,000
points

=⇒ Address the problem with

Functional Maps

Figure: Patient Acquisitions
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Functional Maps

What are Functional Maps [Ovsjanikov et al., 2012] ?

An algebraic formulation of the shape matching problem using a functional

representation of the mapping.

Mapping

Figure: Point-to-Point mapping T [Ovsjanikov et al., 2017]
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Matching Problem:

How to find the mapping?

Resolution of an optimization problem Topt = minT E(T)

Possible issues

Non-convex / non tractable combinatorial optimization (with multiple minima)

Figure: Geodesic Distortion over 10K self-maps on a human shape [Ren et al., 2020]
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Functional Representation

Functional Representation

Use the Dual of the classical point-to-point map T : TF : F(M ,R)→ F(N ,R).

f : M → R has a transformation g : N → R defined by composition

g = f ◦ T−1.

Figure: Ptp map T / Dual map TF / Corresponding Matrix C [Ovsjanikov et al., 2017]
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Functional Representation

Bases for the functional spaces

With bases {φM
i } and {φN

i } for the function spaces of M and N:

f =
∑

i≥1 〈f , φ
M
i 〉M︸ ︷︷ ︸

ai

φM
i and g =

∑
i≥1 〈g, φ

N
i 〉N︸ ︷︷ ︸

bi

φN
i

Figure: Illustration showing how the map is encoded by the matrix C

[Ovsjanikov et al., 2017]
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A physic intuition

The role of modes and frequencies:

Figure: Rope second harmonic

The wave equation is

• widely used to describe the

propagation of oscillations

about an equilibrium

• given by: ∆f = 1
c2
∂2f
∂t2

• solved by separating time and

space: f (x, y, t) = φ(x, y)h(t)
=⇒ ∆φ

φ = h′′

h = λ

Finally, by solving an eigenproblem
∆φ = λφ, we can find stationary
waves.
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Closer to a geometric interpretation

Why do we want oscillation frequencies λ and stationary waves φ?

→ frequencies λ are conditioned by the rope length

→ solutions φ describe possibles behaviors of the rope

→ stationary waves contains nodes (points in 1D) where the oscillation

amplitude is null

And in 2 or 3 dimensions?

Nodes are lines and curves in 2D and 2D planes in 3D.

=⇒ Can those spectral quantities describe surfaces ?
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Spectral representation of shapes

Direct and Inverse Problems

1 Given a shape S, can we deduce something about it spectrum?

2 Conversely, given a spectrum, what can we learn about the shape?

or "Can we hear the shape of a drum?"

=⇒ Study of Spectral properties of shapes to solve various problems:

• Shape matching

• Shape analysis

• Shape retrieval/ recovery from the spectrum

Let’s focus on the first one!
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Functional Representation

Formulation of the shape matching problem

If f and g corresponds, we must have TF (f ) = g.

Figure: Functional Correspondence [Ovsjanikov et al., 2017]
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Functional Representation

Formulation of the shape matching problem

If f and g corresponds, we must have TF (f ) = g.

TF (f ) = TF

(∑
i

aiφ
M
i

)
=
∑

i

aiTF (φM
i )

=
∑

i

ai

∑
j

〈TF (φM
i ), φN

j 〉N︸ ︷︷ ︸
cj,i

φN
j =

∑
j

∑
i

aicj,iφ
N
j

(1)

and

g =
∑

j

bjφ
N
j (2)
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Functional Representation

Using equations (1) and (2), the correspondence between f and g is written

Ca = b.

Estimation of C, the mapping matrix

Figure: Correspondence Matrix
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Functional Representation

Using equations (1) and (2), the correspondence between f and g is written

Ca = b.

Estimation of C, the mapping matrix

We expect f : M → R and g : N → R to correspond (texture, curvature, etc)

→ C must satisfy Ca ' b.

=⇒ Given enough pairs {aj, bj}, C is found by solving a linear system

CA = B in the least square sense where aj and bj are columns of A and B.
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Functional Maps Computation

Preservation of function constraints

• Descriptor preservation

• Wave Kernel Signature [Aubry et al., 2011]

• Heat Kernel Signature [Sun et al., 2009]

• Gaussian Curvature

• SHOT [Tombari et al., 2010]

• Texture preservation

• Landmark/Part correspondences

=⇒ Minimize Edesc(C) = ||CA − B||2
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Functional Maps Computation

Operator Commutativity

Preservation of linear functional operators on M and N

(Symmetry operator, Laplace-Beltrami operator).

We want C to commute with particular operators:

Let SM
F and SN

F be functional operators on M and N, we want

SN
F ◦ TF = TF ◦ SM

F .

In matrix notation: ‖SN
F C − CSM

F ‖ = 0.

=⇒ Minimize Ecomm(C) = ‖SN
F C − CSM

F ‖2

Pierre Galmiche University of Strasbourg - ICube

Modeling the evolution of breast’s shape and appearance during radiotherapy: Functional Maps 22 / 29



Thesis objectives Shape Matching Problem Functional Maps Conclusion

Functional Maps Computation

Functional Map Estimation

Resolve the following optimization problem:

Copt = argmin
C

(Edesc(C) + Ecomm(C)) .

We can add regularization constraints:

• If the map T is volume preserving, its matrix C must be orthonormal i.e

CT C = I . =⇒ Eortho(C) = ‖CT C − I‖2

• If T is an isometry, the matrix C commutes with the Laplace-Beltrami

Operator. =⇒ Eiso(C) = ‖CΛM − ΛN C‖2 with ΛM , ΛN the diagonal

matrices of eigenvalues of M and N Laplacian operators.
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Functional Maps Computation

Conversion to Point-to-Point Map

Figure: PtP/Functional Mappings
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Functional Maps Computation

Conversion to Point-to-Point Map

Use of indicator functions of highly peaked Gaussian:

1 f = δx for a point x ∈ M

2 compute TF (δx) and find the closest function g = δy on N

Using the Laplace-Beltrami basis, one can use an efficient procedure to do it

on all points at once.
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Functional Maps Computation

Conversion to Point-to-Point Map

Use of indicator functions of highly peaked Gaussian:

1 f = δx for a point x ∈ M

2 compute TF (δx) and find the closest function g = δy on N

Using the Laplace-Beltrami basis, one can use an efficient procedure to do it

on all points at once.

Remark: Thanks to the Plancherel’s theorem, given g1, g2 ∈ F(N ,R), with

spectral coefficients s1 and s2, we have:

∑
i

(s1i − s2i)
2 =

∫
N

(g1(y)− g2(y))2µ(y).
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Functional Maps Computation

Post-Processing Iterative Refinement

Improve a generated map using an ICP like technique on the embedded

functional space→ ZoomOut [Melzi et al., 2019].

Figure: Exemple of ZoomOut Refinement [Melzi et al., 2019]
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Functional Maps conclusion

The functional representation of the mapping

• generalizes the Point-to-Point mapping representation.

• allows to use various descriptors.

• allows many constraints to be linear.→ efficient inference
• implies maps can be easily manipulated via algebraic operations

(addition, composition, etc).

=⇒ allows the use of flexible methods.

But also

• seems to be sensitive to noisy data.

• involves a dependence on the chosen descriptors.
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Functional Maps conclusion

A lot of methods developed with functional maps

• ZoomOut [Melzi et al., 2019]

• MapTree [Ren et al., 2020]

• Fully Spectral Partial Shape Matching [Litany et al., 2017]

• Partial Functional Correspondence [Rodolà et al., 2015]

• Functional Maps [Ovsjanikov et al., 2012]

Always trying to use LBO as an intrinsic descriptor and to reduce limitations
like the descriptor choice
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Functional Maps conclusion

Leading to very interesting new methods that are efficient in many complex
cases:

• Instant recovery of shape from spectrum via latent space connections

[Marin et al., 2020]

• Universal Spectral Adversarial Attacks for Deformable Shapes

[Rampini et al., 2021]

• Spectral Unions of Partial Deformable 3D Shapes [Moschella et al., 2021]

• Wavelet-based Heat Kernel Derivatives: Towards Informative Localized

Shape Analysis [Kirgo et al., 2020]

• Orthogonalized Fourier Polynomials for Signal Approximation and Transfer

(Eurographics 2021)

• A parametric analysis of discrete Hamiltonian functional maps

[Postolache et al., 2020]

• LIMP: Learning Latent Shape Representations with Metric Preservation

Priors [Cosmo et al., 2020]
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Conclusion

My thesis focus

• Implement a Partial Matching strategy to match CT point clouds and

textured meshes

Future Steps

• Work on CT RT-Structures (segmentations) to define breast region using

lead wire/CTV.

• Align surfaces for a better visualization.

• Use Latent Space Shape Difference (LSSD) Operators to model and

follow deformations across radiotherapy.

• Transform Slices Dose Maps to 3D Point clouds/Meshes to search for

correlations with displacements.
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Data

ICANS Clinical trials

Inclusion/Exclusion criteria such as Body Mass Index (BMI) ' 30 or breasts with

a C cup size to avoid difficult data.

As a result, we have at our disposal for each of the 60 patients:

• ' 10 meshes of the front part of the torso

• 1 CT scan containing a point cloud representation of

• the from shoulder to hips surface skin contour

• a lead wire around the treated breast

• other structures like the breast, the heart etc

=⇒ ' 600 surface scans and 60 CT scans (18 available as of now)
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Data

DICOM data

Figure: CT scan data structure
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Data

Surface data

Figure: Surface acquisition data structure
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Data

For one patient we have:

Figure: Surface acquisition and RT-Struct for patient BF37
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Data

Figure: Example of DICOM RT-Struct with radiation information
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Data

Figure: Example of DICOM RT-Struct with only breast information
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