

An optimal control formulation for shape-matching in augmented surgery

Guillaume Mestdagh, Yannick Privat and Stéphane Cotin

Mathématique Avancée

Institut de recherche mathématique avancée UMR 7501 Université de Strasbourg et CNRS 7 rue René Descartes 67000 Strasbourg, France

Tel: 03 68 85 02 78 - Email: guillaume.mestdagh@unistra.fr

Contents

- **1.** Augmented liver surgery
- 2. An optimal control formulation
- 3. Numerical aspects
- 4. Conclusion and ongoing work

1 Augmented liver surgery **Introduction**

Augmented reality image during liver surgery Inria, 2018

- Reconstruct organ displacement from intra-operative data acquisition
- Superpose a 3D view onto organ image
- Track tumor location in real-time

1 Augmented liver surgery Shape-matching problem

3D model of the liver in its initial configuration

Intra-operative data

Partial location of the organ

surface (R. Plantefève, 2016)

Objective: deform the mesh to match the observed surface

Plantefève et al., Patient-specific Biomechanical Modeling for Guidance during Minimally-invasive Hepatic Surgery, 2016

¹ Augmented liver surgery **The liver: an elastic solid**

 $u \in H^1_D(\Omega_0)$

 $g \in L^2(\partial \Omega)$

Elasticity equation

1 Augmented liver surgery **State of the art**

Use artificial forces

- Add springs between Γ and organ boundary
- Solve static elasticity problem to compute displacement
- Progressively increase spring stiffness

Haouchine et al., Impact of Soft Tissue Heterogeneity on Augmented Reality for Liver Surgery, 2015

2 An optimal control formulation Optimal control problem

Find a surface loading field g solution of

² An optimal control formulation Why an optimal control problem

- Reconstruct realistic surface force field instead of creating artificial forces
- Add physical or statistical information with penalties or constraints
- Use generic optimization tools to study and solve numerically the problem

² An optimal control formulation **A functional to measure registration quality**

(Nearly-) shape functional

$$J(u) = \frac{1}{2} \int_{\Gamma} d^2 (y, \partial \Omega_u) \, \mathrm{d}y$$

- J(u) = 0 only when registration is successful (i.e $\Gamma \in \partial \Omega_u$)
- Flexible : can be adapted with respect to data uncertainty

² An optimal control formulation Functional : differentiability

Proposition *J* has directional derivatives in $L^2(\partial \Omega_N)$

Compute descent directions

- Use linear elasticity inner product
 = transform L² gradient into forces
- Very similar to spring approach

2 An optimal control formulation Theoretical results

Existence of solutions

- Toy problem with simpler model: $\min J(u_g)$ s.c $\begin{cases} \Delta u + u = 0 & \text{dans } \Omega_0 \\ \partial_u u = \varphi & \text{sur } \partial \Omega \end{cases}$
- **Proposition :** Problem has at least one solution

Optimality conditions

- Useful to compute descent directions
- Involve adjoint state (see later)

3 Numerical aspects **Numerical framework**

- The organ : a mesh
- The target : a point cloud
- Vector fields : P1 finite elements functions
- Linear elasticity equation

Stiffness Au = Sg matrix

Boundary measure matrix

3 Numerical aspects Compute discrete functional

Signed distance field computed on background mesh

$$J(\mathbf{u}) = \frac{1}{2} \sum_{\mathbf{y} \in \Gamma} d^2 (\mathbf{y}, \partial \Omega_{\mathbf{u}})$$

Difficulty

Many orthogonal projections onto mesh boundary

Considered solution Compute a signed distance field

3 Numerical aspects Compute discrete functional

³ Numerical aspects **Minimization : adjoint method**

Compute objective gradient

$$F(\mathbf{g}) = J(\mathbf{u}_{\mathbf{g}}) + R(\mathbf{g})$$

- 1. Solve direct problem Au = Sg
- 2. Solve adjoint problem $Ap = \nabla J(u)$
- 3. Compute gradient $\nabla F(\mathbf{g}) = \mathbf{S}^{\mathrm{T}}\mathbf{p} + \nabla R(\mathbf{g})$

Matrix formulation $\frac{d}{d\mathbf{g}} [J(\mathbf{u}_{\mathbf{g}})] = \frac{d}{d\mathbf{g}} [J(\mathbf{A}^{-1} \mathbf{S}_{\mathbf{g}})] = \mathbf{S}^{\mathrm{T}} \mathbf{A}^{-\mathrm{T}} \nabla J(\mathbf{A}^{-1} \mathbf{S}_{\mathbf{g}})$

³ Aspects numériques Minimization : gradient descent

Iteration

- 1. Current iterate : **g**_k
- 2. Compute gradient $\nabla F(\mathbf{g}_k)$ using adjoint method
- 3. Choose stepsize α_k which makes objective function decrease
- 4. Compute next iterate $\mathbf{g}_{k+1} = \mathbf{g}_k \alpha_k \nabla F(\mathbf{g})$

³ Numerical aspects Handling a noisy point cloud

Difficulty

Error on intra-operative data

Considered solutions

- Regularized problem $\min J(\mathbf{u}_{\mathbf{g}}) + \frac{1}{2} ||\mathbf{g}||_{L^2}^2$
- Problem with poinwise constraints $\min J(\mathbf{u}_{\mathbf{g}})$ s.c $\|\mathbf{g}\|_{L^{\infty}} \leq M$

3 Numerical aspects Regularized problem

Regularized problem

$$\min J\left(\mathbf{u}_{\mathbf{g}}\right) + \frac{1}{2} \|\mathbf{g}\|_{L^2}^2$$

- Penalize control global norm
- Unconstrained problem
- Problem is more convex and more coercive

³ Numerical aspects **Problem with pointwise constraint**

Constrained problem

$$\min J(\mathbf{u}_{\mathbf{g}}) \text{ s.c } \|\mathbf{g}\|_{L^{\infty}} \le M$$

- Pointwise constraint on control
- Physical meaning
- Coherent with existence theory

3 Numerical aspects Control regularity

4 Conclusion and ongoing work Optimal control in SOFA

- Create SOFA plugin to handle and solve optimal control problems
- Implement classes for optimization problems and algorithms
- Interact with other projects (neural networks, functional maps)
- Solve specific problems in liver registration

Conclusion

Advantages of optimal control formulation

- Generic tools to study and solve problem
- Easily add physical information into problem

What's next

- Computation on a real-life problem
- Implement efficient program