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1 Augmented liver surgery

Introduction
• Reconstruct organ displacement
from intra-operative data
acquisition

• Superpose a 3D view onto organ
image

• Track tumor location in real-time
Augmented reality image
during liver surgery
Inria, 2018
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1 Augmented liver surgery

Shape-matching problem
Pre-operative data

3Dmodel of the liver in its
initial configuration

Intra-operative data

Partial location of the organ
surface (R. Plantefève, 2016)

Objective: deform themesh tomatch the observed surface

Plantefève et al., Patient-specific Biomechanical Modeling for Guidance during Minimally-invasive Hepatic Surgery, 2016
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1 Augmented liver surgery

Mathematical model
𝑦

𝑝𝜕Ω𝑢(𝑦)

𝑑(𝑦,𝜕Ω 𝑢)Organ in reference
configuration Ω0

DomainΩ𝑢 
associated with
displacement field 𝑢

Observed
surface Γ

Clamped boundary



Elasticity equation
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1 Augmented liver surgery

The liver: an elastic solid
Notation
Displacement field 𝑢∈𝐻1

D Ω0
Surface loading 𝑔∈𝐿2 𝜕ΩN

div 𝜎 𝑢 = 0 in Ω0
𝑢 = 0 on 𝜕ΩD

𝜎 𝑢 ⋅ 𝑛 = 𝑔 on 𝜕ΩN

Displacement field

Surface loading Clamped boundary𝜕ΩD

Free boundary𝜕ΩN
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1 Augmented liver surgery

State of the art

Ω0

Ω𝑢

Γ

Springs

Use artificial forces

• Add springs between 𝚪 and organ
boundary

• Solve static elasticity problem to
compute displacement

• Progressively increase spring
stiffness

Haouchine et al., Impact of Soft Tissue Heterogeneity on Augmented Reality for Liver Surgery, 2015



Find a surface loading field 𝑔 solution of

min 𝐽 𝑢𝑔 + 𝑅(𝑔) s.c 𝑔 ≤ 𝑀 sur 𝜕ΩN

𝑢𝑔 : elastic displacement created by 𝑔.
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2 An optimal control formulation

Optimal control problem

Discrepancy with data

Penalization term

Pointwise constraint on surface loading



• Reconstruct realistic surface force field instead of creating artificial forces

• Add physical or statistical information with penalties or constraints

• Use generic optimization tools to study and solve numerically the problem
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2 An optimal control formulation

Why an optimal control problem
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2 An optimal control formulation

A functional to measure registration quality
𝑦

𝑝𝜕Ω𝑢(𝑦)

𝑑(𝑦,𝜕Ω𝑢)Ω0

Ω𝑢

Γ

(Nearly-) shape functional

• 𝐽 𝑢 = 0 only when registration is
successful (i.e Γ ∈ 𝜕Ω𝑢)

• Flexible : can be adapted with respect
to data uncertainty

𝐽 𝑢 = 1
2 Γ

𝑑2 𝑦,𝜕Ω𝑢  d𝑦



Compute descent directions

• Use linear elasticity inner product
= transform 𝐿2 gradient into forces

• Very similar to spring approach
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2 An optimal control formulation

Functional : differentiability

Proposition
𝐽 has directional derivatives in 𝐿2 𝜕ΩN

𝑦 − 𝑝𝜕Ω𝑢 𝑦

𝐿2 gradient of 𝐽

Danskin, The theory of Min-Max and its application to weapon allocation problems, 1967



Existence of solutions

• Toy problemwith simpler model :min 𝐽 𝑢𝑔 s.c
∆𝑢 + 𝑢 = 0 dans Ω0

𝜕𝑛𝑢 = 𝑔 sur 𝜕Ω

• Proposition : Problem has at least one solution
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2 An optimal control formulation

Theoretical results

Lieberman, The conormal derivative problem for elliptic equations of the variational type, 1983

Optimality conditions

• Useful to compute descent directions

• Involve adjoint state (see later)



• The organ : a mesh

• The target : a point cloud

• Vector fields : P1 finite elements
functions

• Linear elasticity equation

𝐀𝐮 = 𝐒𝐠
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3 Numerical aspects

Numerical framework

Stiffness
matrix

Boundary measure matrix



𝐽 𝐮 = 1
2

𝑦∈𝛤
𝑑2 𝑦,𝜕Ω𝐮

Difficulty
Many orthogonal projections ontomesh
boundary

Considered solution
Compute a signed distance field
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3 Numerical aspects

Compute discrete functional Signed distance field computed
on backgroundmesh
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3 Numerical aspects

Compute discrete functional
Orthogonal projection

𝑦

𝑝𝜕Ω𝑢 (𝑦)

𝑝𝜕Ω𝑢 𝑦 = 𝑦 − 𝑑𝛺 𝑦 𝛻𝑑𝛺 𝑦



3 Numerical aspects

Minimization : adjoint method
Compute objective gradient

 𝐹 𝐠 = 𝐽 𝐮𝐠 + 𝑅(𝐠)

1. Solve direct problem 𝐀𝐮 = 𝐒𝐠

2. Solve adjoint problem 𝐀𝐩 = ∇𝐽(𝐮)

3. Compute gradient  ∇𝐹 𝐠 = 𝐒T𝐩 + ∇𝑅(𝐠)
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Matrix formulation
d

d𝐠
𝐽 𝐮𝐠 = d

d𝐠
𝐽 𝐀−1 𝐒𝐠 = 𝐒T𝐀−T ∇𝐽 𝐀−1 𝐒𝐠

𝐩



3 Aspects numériques

Minimization : gradient descent

Iteration

1. Current iterate : 𝐠𝑘 

2. Compute gradient∇𝐹 𝐠𝑘 using adjoint method

3. Choose stepsize 𝛼𝑘 whichmakes objective function decrease

4. Compute next iterate 𝐠𝑘+1 = 𝐠𝑘 − 𝛼𝑘∇𝐹 𝐠



Difficulty
Error on intra-operative data

Considered solutions• Regularized problem
min 𝐽 𝐮𝐠 + 1

2
𝐠 2

𝐿²

• Problemwith poinwise constraints
min 𝐽 𝐮𝐠 s.c 𝐠 𝐿∞ ≤ 𝑀
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3 Numerical aspects

Handling a noisy point cloud



3 Numerical aspects

Regularized problem
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Regularized problem

min 𝐽 𝐮𝐠 + 1
2

𝐠 2
𝐿²

• Penalize control global norm

• Unconstrained problem

• Problem is more convex andmore
coercive



Constrained problem

min 𝐽 𝐮𝐠 s.c 𝐠 𝐿∞ ≤ 𝑀

• Pointwise constraint on control

• Physical meaning

• Coherent with existence theory

3 Numerical aspects

Problemwith pointwise constraint
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3 Numerical aspects

Control regularity
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ConstraintPenaltyNothing



4 Conclusion and ongoing work

Optimal control in SOFA

• Create SOFA plugin to handle and solve optimal control problems

• Implement classes for optimization problems and algorithms

• Interact with other projects (neural networks, functional maps)

• Solve specific problems in liver registration
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Conclusion

Advantages of optimal control formulation• Generic tools to study and solve problem

• Easily add physical information into problem

What’s next• Computation on a real-life problem

• Implement efficient program


