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Clinical context

By fusing the pre-operative data with operative fluoroscopic images, we seek to
provide a better understanding of the anatomy, reduce procedure time
and eliminate the need for fiducials.

A direct application of our method is motion management for radiotherapy. A
variety of methods have been developed to bring solutions to this problem.



Clinical context

One of the most widely used method, CyberKnife, uses fiducialsand a dual
XRay acquisition to track the tumor with ~3mm precision[1].

Fiducials implantation is an invasive procedure that can lead to complications
such as pneumothorax [2], so it is necessary to develop markerless methods to

tackle this problem.

[1] Adler, J., Chang, S., et al. : The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg. 69(2):124-128, 1997.

[2] Kothary, N., Heit, et al. : Safety and efficacy of percutaneous fiducial marker implantation for image-guided radiation therapy. J Vasc Interv Radiol, 20(2):235-239,
2009. 7




Clinical context

A more recent method uses a DeeplLearning approach to bypass the need for

markers in the image while still needing the dual XRay acquisition, with similar
results[3].

Our goal is to eliminate this need as well, because it implies specific equipment
and double the radiation dose for the patient

[3] Hirai, R., Sakata, Y., et al. : Real-time tumor tracking using fluoroscopic imaging with deep neural network analysis. Physica Medica, 59:22-29, 2019




To summarize...

m Our goal is to develop a method to compute the anatomical deformations
corresponding to an input XRay image, in 3D and real-time.

m We want to be the least invasive possible, so fiducials as well as dual
fluoroscopic acquisitions are not possible.

m After reviewing the state of the art in the context of radiotherapy, we
found no method able to perform 2D/3D registration for this context.




Assumptions

m Fluoroscopic images contain information about 3D anatomy

m This information can be translated from 2D to 3D
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Data Generation: CT Deformation

m CTis a 3D-image and we want to apply geometric deformations.

m We can start from the displacement field between two respiratory phases:
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Data Generation: CT Deformation

m CTis a 3D-image and we want to apply geometric deformations.

m The displacement field can also be understood as an image:
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Displacement field shown on top of the CT for one slice and one direction
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Data Generation: CT Deformation

m CTis a 3D-image and we want to apply geometric deformations.

m We can randomize it in the Fourier domain:

Base field example
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Left: Displacement field obtain by landmark-based registration
Right: Displacement fields generated by randomizing frequency components 13




Data Generation: DRR rendering

m Uses the VolumetricXRayRendering plugin (developed by Fred Leroy)
m CTimage in 3D space is projected using a ray-tracing shader

m Ray intensity diminishes as it goes through matter (I = 1,e%)
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Data Generation: DRR rendering

m Uses the VolumetricXRayRendering SOFA plugin (developed by Fred Leroy)

m We obtain a Digitally Rendered Radiography (DRR):

DRR Fluoroscopic image
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Deep Learning: Training procedure

1. The network is asked to find the displacement in 3D from a DRR:

Input

X-ray image Neural Network 3D Deformation Grid

From a single projection, the encoder-decoder network generates a coarse
displacement field on the 3D volume

2. Theloss is computed and backpropagation is performed:

n

1
MSE = ;1- 2 (yi — )71_)2

=1
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Tralning summary

The encoder-decoder is trained on N data samples for >10 hrs

Trained
model
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Usage

1. The encoder-decoder predicts a displacement field in ~30ms from a fluoroscopic image.

2. The displacement is applied to 3D data for augmented reality in real-time
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Deep Learning. Network Architecture
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1. The Encoderfeatures from the input image to build a feature map.

The Transformer module reshapes the feature map to obtain a 3D representation of the
image.

3. The Decoderconverts the feature representation back to intensity space.




Max Absolute Error

Synthetic results
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Max Absolute Displacement

Plot of the maximal error of the network against the maximal displacement value per validation sample (N = 400).

The blue and orange dots represent the two displacement directions the network predicted.
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Synthetic results :

Ground Truth Ground Truth
Prediction Prediction

Examples of GT vs Prediction for the same slice for two validation samples (Inferior-Superior displacement)
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Synthetic results :
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Regularization accuracy gain vs. Displacement amplitude
As the predicted displacement error increases (orange line), the elastic model (blue dots) compensates for most of it.
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Discussion

Our method is capable of achieving state-of-the art results (error < 4mm),
for a computation time of 30ms.

It also demonstrates that it is possible to predict 3D data froma 2D
projection.

However, it only works on synthetic images and has trouble generalizing to
unseen deformations.

The physical regularization is hecessary for the prediction of
displacements perpendicular to the projection plane but hasn't been
tested in conjunction with the network
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Next steps

m The performance on realistic data depends on the quality of the training
data :

 The DRR quality can be improved by using updated DRR tools.
 The displacement fields generation needs to be perfected.

m FEM regularization needs to be implemented (preliminary results
demonstrate proof of concept)

m Moving forward, the framework can be generalized to be robust for any
projection direction by including camera pose information in the training.
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Conclusion

m The method we are developing aims to compute the 3D deformation field
that would allow the registration of the CT on the input XRay image, in real-
time.

m The goal is to be the least invasive, so fiducials as well as dual
fluoroscopic acquisitions are not possible.

m After reviewing the state of the art in the context of radiotherapy, we found
no method able to perform 2D/3D registration for this context.

m Moving forward, the framework can be generalized to be robust for any

projection direction by including camera pose information in the training.
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Thank you for your attention !

Please don't hesitate to ask questions.

The End
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Synthetic results :

Simulated respiratory motion : target (red), fixed (green)
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Synthetic results :

Simulated respiratory motion : target (red), predicted (green)
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Synthetic results :

Green: Rest FEM mesh extracted from pre-op CT
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Synthetic results :

Green: Rest FEM mesh extracted from pre-op CT
Red: FEM mesh after registration for only two directions
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Synthetic results :

Green: Rest FEM mesh extracted from pre-op CT
Red: FEM mesh after physical regularization
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