END-TO-END 3D/2D REGISTRATION WITH DEEP LEARNING USING SYNTHETIC DATA

A method for the fusion of pre-op CT data on interventional XRay images

François Lecomte

1. Pre-op CT acquisition

Segmentation -> 3D model of tumors, anatomical structures

1. Pre-op CT acquisition

Segmentation -> 3D model of tumors, anatomical structures

2. Interventional XRays acquisition

+

Problem :

How to register in real time, taking into account deformations of the anatomy ?

+

:

Problem :

How to register in real time, taking into account deformations of the anatomy ?

+

Clinical context

By fusing the pre-operative data with operative fluoroscopic images, we seek to provide a better **understanding of the anatomy**, reduce **procedure time** and **eliminate the need for fiducials**.

A direct application of our method is **motion management for radiotherapy**. A variety of methods have been developed to bring solutions to this problem.

Clinical context

One of the most widely used method, CyberKnife, uses **fiducials and a dual XRay acquisition** to track the tumor with ~3mm precision[1].

Fiducials implantation is an **invasive** procedure that can lead to complications such as **pneumothorax** [2], so it is necessary to develop markerless methods to tackle this problem.

[1] Adler, J., Chang, S., et al. : The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg. 69(2):124-128, 1997.

[2] Kothary, N., Heit, et al. : Safety and efficacy of percutaneous fiducial marker implantation for image-guided radiation therapy. J Vasc Interv Radiol, 20(2):235-239, 2009.

Clinical context

A more recent method uses a DeepLearning approach to bypass the need for markers in the image while still needing the dual XRay acquisition, with similar results[3].

Our goal is to eliminate this need as well, because it implies **specific equipment** and **double the radiation dose** for the patient

[3] Hirai, R., Sakata, Y., et al. : Real-time tumor tracking using fluoroscopic imaging with deep neural network analysis. Physica Medica, 59:22–29, 2019

To summarize...

- Our goal is to develop a method to compute the anatomical deformations corresponding to an input XRay image, in 3D and real-time.
- We want to be the least invasive possible, so fiducials as well as dual fluoroscopic acquisitions are not possible.
- After reviewing the state of the art in the context of radiotherapy, we found no method able to perform 2D/3D registration for this context.

Assumptions

- Fluoroscopic images contain information about 3D anatomy
- This information can be translated from 2D to 3D

Data Generation: CT Deformation

CT is a 3D-image and we want to apply geometric deformations.

We can start from the displacement field between two respiratory phases:

Data Generation: CT Deformation

- CT is a 3D-image and we want to apply geometric deformations.
- The displacement field can also be understood as an image:

Displacement field shown on top of the CT for one slice and one direction

Data Generation: CT Deformation

CT is a 3D-image and we want to apply geometric deformations.

• We can randomize it in the Fourier domain:

Left: Displacement field obtain by landmark-based registration Right: Displacement fields generated by randomizing frequency components

Data Generation: DRR rendering

- Uses the VolumetricXRayRendering plugin (developed by Fred Leroy)
- CT image in 3D space is projected using a ray-tracing shader
- Ray intensity diminishes as it goes through matter ($I = I_0 e^{-\mu x}$)

Data Generation: DRR rendering

Uses the VolumetricXRayRendering SOFA plugin (developed by Fred Leroy)

We obtain a Digitally Rendered Radiography (DRR):

Fluoroscopic image

Deep Learning: Training procedure

1. The network is asked to find the displacement in 3D from a DRR:

From a single projection, the encoder-decoder network generates a coarse displacement field on the 3D volume

2. The loss is computed and backpropagation is performed:

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

Training summary

The encoder-decoder is trained on *N* data samples for >10 hrs

Usage

- 1. The encoder-decoder predicts a displacement field in ~30ms from a fluoroscopic image.
 - 2. The displacement is applied to 3D data for augmented reality in real-time

Deep Learning: Network Architecture

- 1. The **Encoder** features from the input image to build a feature map.
- 2. The **Transformer** module reshapes the feature map to obtain a 3D representation of the image.
- 3. The **Decoder** converts the feature representation back to intensity space.

Plot of the maximal error of the network against the maximal displacement value per validation sample (N = 400).

The blue and orange dots represent the two displacement directions the network predicted.

Examples of GT vs Prediction for the same slice for two validation samples (Inferior-Superior displacement)

Regularization accuracy gain vs. Displacement amplitude

As the predicted displacement error increases (orange line), the elastic model (blue dots) compensates for most of it.

Discussion

- Our method is capable of achieving state-of-the art results (error < 4mm), for a computation time of 30ms.
- It also demonstrates that it is possible to predict 3D data from a 2D projection.
- However, it only works on synthetic images and has trouble generalizing to unseen deformations.
- The physical regularization is necessary for the prediction of displacements perpendicular to the projection plane but hasn't been tested in conjunction with the network

Next steps

- The performance on realistic data depends on the quality of the training data :
 - The DRR quality can be improved by using updated DRR tools.
 - The displacement fields generation needs to be perfected.
- FEM regularization needs to be implemented (preliminary results demonstrate proof of concept)
- Moving forward, the framework can be generalized to be robust for any projection direction by including camera pose information in the training.

Conclusion

- The method we are developing aims to compute the 3D deformation field that would allow the registration of the CT on the input XRay image, in realtime.
- The goal is to be the least invasive, so fiducials as well as dual fluoroscopic acquisitions are not possible.
- After reviewing the state of the art in the context of radiotherapy, we found no method able to perform 2D/3D registration for this context.

Moving forward, the framework can be generalized to be robust for any projection direction by including camera pose information in the training.

Thank you for your attention !

Please don't hesitate to ask questions.

Simulated respiratory motion : target (red), fixed (green)

Simulated respiratory motion : target (red), predicted (green)

Green: Rest FEM mesh extracted from pre-op CT

Green: Rest FEM mesh extracted from pre-op CT Red: FEM mesh after registration for only two directions

Green: Rest FEM mesh extracted from pre-op CT Red: FEM mesh after physical regularization