Wearable Sensor Technology for Individual Grip Force Profiling

Rongrong Liu, Florent Nageotte, Philippe Zanne, and Birgitta Dresp-Langley

MLMS, ICube Lab UMR 7357 Centre National de la Recherche Scientifique (CNRS) Strasbourg University

Introduction

Introduction

Wearable wireless biosensor signals

- Convenient
- Continuous
- Unobtrusive

Grip Force Signals

Wearable wireless sensor glove system^[1]

[1] M. de Mathelin, F. Nageotte, P. Zanne, B. Dresp-Langley, Sensors for expert grip force profiling: towards benchmarking manual control of a robotic device for surgical tool movements, Sensors (Basel), Vol. 19, Issue 20, 2019, 4575.

Force sensor locations

Sensor Hand region		Anatomical reference
<i>S</i> 1	Thumb Distal Phalar	
S2	Index	Distal Phalanx
S3	Middle	Distal Phalanx
<i>S</i> 4	Index	Middle Phalanx
S5	Middle	Middle Phalanx
S 6	Ring	Middle Phalanx
<i>S</i> 7	Pinky	Middle Phalanx
S 8	Palm	Head Metacarpal
S9	Palm	Head Metacarpal
S10	Palm	Shaft Metacarpal
S11	Palm	Base Metacarpal
S12	Palm	Base Metacarpal

7

Materials and Methods

Data acquisition system

Experimental task design

Four-step pick-and-drop task

Step		Descript	tion	
1	Activate and	move tool tow	ards object lo	cation
2	Open and clo	se grippers to	grasp and lift	object
3	Move tool wi	th object to ta	rget location	
4	Open gripper	s to drop obje	ct in box	

Four snapshot views of the four successive steps

Experimental Platform: STRAS endoscope^[2]

[2] De Donno, A.; Zorn, L.; Zanne, P.; Nageotte, F.; de Mathelin, M. Introducing STRAS: A new flexible robotic system for minimally invasive surgery. 2013 IEEE International Conference on Robotics and Automation. IEEE, 2013, pp. 1213–1220

Ten successive task sessions for both hands of three users

Number of grip force signals for each sensor

User	Dominant hand	Non-dominant hand
Proficient expert	4442	5244
Trained user	5974	6764
Complete novice	7780	6497

Task execution time

Results from two-way ANOVA on time data as a function of user and handness

Source of variation		Degree of freedom		F	Р	
	User		2		15.65	< 0.001
	Handness		1		0.09	Not significant
	User × Handness		2		4.13	<0.05

ANOVA: Analysis of variance

Total force across sessions (V)

Sensor	Expert_D	Expert_N	Intermi_D	Intermi_N	Novice_D	Novice_N
1	0.63	3.40	0	0.00	0	0
2	6.23	0	9.16	58.67	793.23	447.29
3	10.9 <mark>6</mark>	0	0	0	5328	0
4	9.03	<mark>46.90</mark>	37.50	0.60	6.07	0
5	437. <mark>1</mark> 3	1811.11	2901.79	283.75	5946.81	1926.19
6	2009. <mark>06</mark>	1895.4 <mark>7</mark>	3327.50	3520.78	3915.37	6910.31
7	2607. <mark>76</mark>	115.71	60.63	3638.08	664.06	3420.98
8	0	487.50	1064.15	38.27	5022.85	1512.46
9	<mark>2.5</mark> 0	534.0 <mark>2</mark>	786.74	0	8838.14	0.66
10	<mark>2106.</mark> 27	900.4 <mark>4</mark>	489.66	499.17	5062.52	3246.43
11	0	3966.7 <mark>0</mark>	0	0	6842.42	0
12	5.1 <mark>5</mark>	2242.1 <mark>3</mark>	1593.11	0	6585.59	2.71
Total	7194.10	12003. <mark>3</mark> 9	10270.23	8039.33	48405.31	17467.03

Three sensors on middle phalanx chosen

Sensor	Finger	Role in grip force control ^[3]	<u>\$6</u>
S 5	Middle	Gross grip force deployment	\$7 \$9 \$ \$9 \$
S6	Ring	No meaningful role in grip force control	S8 S10 •
S7	Pinky	Precision grip force control	\$12 \$11

[3] H. Kinoshita, S. Kawai, K. Ikuta, Contributions and coordination of individual fingers in multiple finger prehension. Ergonomics, Vol. 38, Issue 6, 1995, pp. 1212-30.

S2

Statistical comparison on raw data

Concer	Cossion	Mea	Mean (m)/ SEM(sem)			
Sensor	Session	Expert_D		Novice_D	significance	
CE	First	m=240mV /sem=	=4.6 m=7	90mV /sem=3.0	F(1,3120)=169.39;	
55	Last	m = 48mV /sem=	=0.4 m=6	92mV /sem=2.2	p<0.001	
56	First	m=576mV /sem=	=4.5 m=5	04mV /sem=2.4	F(1, 3120)=394.24;	
50	Last	m=474mV /sem=	=5.2 m=5	40mV /sem=2.2	p<0.001	
57	First	m=594mV /sem=	=3.4 m= 1	.11mV /sem=0.8	F(1, 3120)=260.72	
57	Last	m=609mV /sem=	=2.4 m=	73mV /sem=0.6	p<0.001	

Average peak amplitudes

Discussion

- Spatiotemporal grip force analysis for wearable wireless biosensor
- Wireless wearable sensor technology makes it easier for real-time tracking of the evolution of individual force profile
- Grip force strategy revealing task skill evolution and expertise
- To deliver insight to
 - risk prevention in robotic assisted surgery systems
 - feed-back to junior surgeons during training
 - rehabilitation robot assisting for precision tasks

Ongoing work

Updated glove system with more advanced sensors ^[4]

[4] Sundaram S, Kellnhofer P, Li Y, et al. Learning the signatures of the human grasp using a scalable tactile glove[J]. Nature, 2019, 569(7758): 698-702.

Acknowlegement

- This work has been conducted in the framework of the University of Strasbourg's Excellence Program IDEX.
- Support from CNRS is gratefully acknowledged.

Thanks for your attention

