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Introduction
Dynamic skin deformation contributes to the enriched 
realism of character models in rendered scenes.

It has a long tradition in CG and CA…

https://www.youtube.com/watch?v=Jf6CmxeEpw4&t=15s



[Mukai18] Tomohiko Mukai, Example-Based Skinning Animation, pp 2093-2112, Handbook of Human Motion, Springer, 2018.
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Introduction

Get the skin surface .

[MTT91] Magnenat-Thalmann N., Thalmann D., “Human Body Deformations Using Joint-dependent Local Operators and Finite-
Element Theory”, Making Them Move, N.Badler, B.A.Barsky, D.Zeltzer, eds, Morgan Kaufmann, San Mateo, California, pp.243-262, 
1991.

Linear blend skinning: [MTT91]

Define the skeleton 
Map vertices to the skeleton: 

Apply rotations to the 
skeleton.
Reposition vertices ( ).



Introduction

http://www.flipcode.com

Linear blend skinning

𝐯 = 𝑤 𝐌 (𝜃 ) ⋅ 𝐯
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Unnatural deformations
at certain poses

Impossible to express 
nonlinear deformation
i.e. muscle bulging

[Yang & Zhang 06] Xiaosong Yang and J. J. Zhang, "Stretch It - Realistic Smooth Skinning," International Conference on
Computer Graphics, Imaging and Visualisation (CGIV'06), Sydney, Qld., 2006, pp. 323-328.

[Lewis et al 06] J. P. Lewis, Matt Cordner, and Nickson Fong. 2000. Pose space deformation: a unified approach to shape
interpolation and skeleton-driven deformation. Proc Computer graphics and interactive techniques SIGGRAPH ‘00.

[Romero et al 20] Romero, Cristian & Otaduy, Miguel & Casas, Dan & Perez, Jesus. (2020). Modeling and Estimation of Nonlinear
Skin Mechanics for Animated Avatars. Computer Graphics Forum. 39. pp. 77-88.
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Impossible to simulate
skin dynamics
i.e. jiggle effect
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Limitations of LBS

Introduction



Geometric Physics-based

[Ziva Dynamics] 

Solutions: Previous work

[Sloan et al. 01] 

[Magnenat-Thalmann et al. 04] N Magnenat-Thalmann, F Cordier, H Seo, G Papagianakis, Modeling of bodies and clothes for
virtual environments, 2004 International Conference on Cyberworlds, 201-208

[Sloan et al. 01] P. P. Sloan, C. Rose and M. Cohen, “Shape by Example”, ACM SIGGRAPH Symposium on Interactive 3D
Graphics, NC, USA, pp. 135–143, 2001.

[Magnenat-Thalmann et al. 04] 

Example-based

Previous work



1* + 2* + 3* + … Basis shape vectors

𝑴 𝜷 = 𝑻 + 𝛽 𝑺𝒏

Previous work

A unifying framework for subject- & 
pose-dependent shapes

[ASK+05] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis J., SCAPE: Shape Completion and
Animation of People. ACM Trans. Graph. (Proc. SIGGRAPH 24, 3, 408–416) 2005.

[HLRB12] D. Hirshberg, M. Loper, E. Rachlin, and M. Black, Coregistration: Simultaneous alignment and modeling of
articulated 3D shape. In European Conf. on Computer Vision (ECCV), LNCS 7577, Part IV, 242–255, 2012.

[LMRP+15] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. SMPL: A Skinned Multi-Person Linear Model.
ACM Trans. Graphics (Proc. SIGGRAPH Asia), 2015.

[HLRB12,LMRP+15]

[SMT03] Seo H., and Magnenat-Thalmann N., “An Automatic Modeling of
Human Bodies from Sizing Parameters”, ACM SIGGRAPH 2003 Symposium
on Interactive 3D Graphics (April), pp.19-26, Monterey, USA, 2003.

Data-driven body shape modelers [SMT03, ASK+05]



Data-driven dynamic human shape modelers

Previous work

[BODO18] Bailey S. W., Otte D., Dilorenzo P., and O'Brien J. F.: Fast and Deep Deformation Approximations. ACM Trans. 
Graph., 37(4):119:1–12, August 2018.

[CO18] Casas, D. & Otaduy, M. (2018). Learning Nonlinear Soft-Tissue Dynamics for Interactive Avatars. Proc. ACM
Computer Graphics and Interactive Techniques. 1. 1-15.

[PMR+15] Pons-Moll G., Romero J., Mahmood N., and Black M. J.: Dyna: a model of dynamic human shape in motion. ACM 
Trans. Graph. 34, 4, Article 120 (July 2015).

𝑙𝑖𝑛𝑒𝑎𝑟 𝒕

𝑙𝑖𝑛𝑒𝑎𝑟 𝒕 𝒕 𝒕 𝒕

t

[PMR+15, CO18] 



• The results of frame t depend on the results of previous frames t-1, t-2, …
• We should also consider subject specificity i.e. . 

• We deploy LSTM network to learn our function. 

Our goal is to learn a function  

𝒕 𝒕 𝟏

DS-Net : Overview
𝒕 𝒕

c.f. 𝒕 𝒕 𝒕 𝒕

Both input and outputs are sequences!!

=>

A common shape space is required: SMPL! (A Skinned Multi-Person 
Linear Model)



SDD: linear blend skinning

Template model Pose blend shapeShape blend shape

[LMRP+15] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. SMPL: A Skinned Multi-Person Linear Model.
ACM Trans. Graphics (Proc. SIGGRAPH Asia), 2015.

𝜷

  

SMPL: A Skinned Multi-Person Linear Model [LMRP+15] 

Dynamic skin : model



[PRMB15] Pons-Moll G., Romero J., Mahmood N., and Black M. J.: Dyna: a model of dynamic human shape in motion. ACM
Trans. Graph. 34, 4, Article 120 (July 2015), 14 pages.

Dyna dataset [PRMB15]

• Captured shapes exhibiting dynamic skin deformation
• 5 (female) subjects, 10~14 motions each
• Inter-, intra-subject correspondence with N=6890 vertices, 13776 triangles
• The duration of each sequence varies: 2 ~15 sec.

Dynamic skin: dataset



Dynamic skin: dataset
Dyna [PRMB15] : training & validation
Mosh [LMB14] : test

dataset subjects motions fps No. sequences 
(men/women) 

Dyna
5 men,  

5 women

10~14 motions for each subject:
one-leg jumping, light hoping, jumping 
jacks, shake hips, running in place, etc.

60 66 / 67

Mosh Same subjects as 
above

Includes some skin-dynamics inducing 
motions (side-to-side hoping, 

basketball, kicking) that are not 
included Dyna.

100 24 / 30

[PRMB15] Pons-Moll G., Romero J., Mahmood N., and Black M. J.: Dyna: a model of dynamic human shape in motion. ACM
Trans. Graph. 34, 4, Article 120 (July 2015), 14 pages.
[LMB14] M. Loper, N. Mahmood, and M. J. Black. MoSh: Motion and Shape Capture from Sparse Markers. ACM Trans.
Graph., 33(6):220:1–220:13, Nov. 2014.



Extraction of SMPL parameters + redisuals ∆, from each mesh.

1. Compute the best matching SMPL parameters ( , ) at frame 1.

Generation of training data

𝜷,𝜽

𝜽𝒕

∗
𝒕

2. Compute the best matching SMPL parameters 𝒕 for each frame > 1.

3. The displacement vector is considered as  the dynamic skin component.
∗

𝒕
∗

Unposing operation: transforms a body mesh to its rest pose.

Fixed throughout all frames > 1.

The training data is a set of input and output pairs : { , , )}, m=1…65. 

For each motion sequence m:



(c) 𝑆(b) (a) 

Generation of training data
Mesh alignment results

(d) 𝑆

Skin offsets contributed by the 
dynamic skin deformation are 
recorded at a canonical pose 0. 



DSNet: Dynamic skin prediction
• The original data space resides in a high dimensional space: ∆ ∈ 𝑅 ×  (> 20 000)

• We represent them in a latent space by using an autoencoder: 
• The DSNet LSTM is trained on the latent space

DS-Net : network architecture

enc dec

Pre-trained
Autoencoder (AE)

𝛿
decdec
(AE)

decdec
(AE)

FC FC

FC FC

LSTM LSTM

Dynamic skin 
network

. . .

( )( )

FC FC

𝐿(𝜹 , 𝜹 ) = 𝜹 − 𝜹



Long Short Term Memory network [HS97] 

• It’s an RNN, network with recurrent edges
• One or more layer is connected to itself
− Self connections allow the network to build an internal 

representation of past inputs
− In effect they serve as network memory

𝒕 𝒕 𝟏

Our function

DS-Net : LSTM

[HS97] Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.



DSNet: Earlier versions II

DecoderShape encoder

𝑖𝑛𝑖𝑡 =  𝐿𝑆𝑇𝑀 (𝑑𝑒𝑛𝑠𝑒 𝜷 )

DS-Net : network architecture



enc dec

Pre-trained
Autoencoder (AE)

∆ ∆𝛿
decdec
(AE)

∆∆

𝜹 𝜹

decdec
(AE)

FC FC

LSTM LSTM

LSTM LSTM

FC FC

LSTM LSTM

𝞿 𝞿

Dynamic 
skin Decoder

Body shape
Encoder

𝜷

FC

RBF

. . .

DSNet: Earlier versions I

DS-Net : network architecture

𝞿 = (𝒗𝒕, 𝒂𝒕, 𝜽�̇�, 𝜽�̈�)



DS-Net : data dimension reduction

It reduces the dimension of the original mesh 3N (3×6890=
20,670) to 100!!

: data
: dense layer

Mesh autoencoder (AE):

𝜹



Mesh autoencoder (AE):

DS-Net : AE details

• The input data has been normalized to [-1,1].
• Pytorch implementation of Adam optimizer.
• Batch size 64, learning rate 0,0001.
• 11,8% of network parameters, compared to the other AE. 

=> much more efficient to train!! 



DS-Net : AE results
Reconstruction results: min 0 cm, max 1.033 cm



DS-Net : AE results
Reconstruction results: min 0 cm, max 1.000 cm



DS-Net : details
Implementation details
• Tensorflow 2.0 implementation of Adam optimizer 
• 3rd dimensions of output vectors: 64, 128, 60, 100
• Activation functions: linear, tanh, (bath normalization), linear 
• Batch size=16, lr= 0.0001.
• 0.05 sec/epoch on a Ubuntu machine with Nvidia GeForce RTX 2080 

Super 

Data preprocessing
• Uniformize the frame lengths (to 300) by zero padding or tail clipping.



DS-Net : Results
On validation data:

0,000

0,005

0,010

0,015

0,020

0,025

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

22
6

23
5

24
4



DS-Net : Results
On validation data:



DS-Net : Results
On validation data:



On validation data:

DS-Net : Results



On unseen motions :

DS-Net : Results



On unseen motions :

DS-Net : Results



On unseen motions :

DS-Net : Results



On unseen motions :

DS-Net : Results



DS-Net : Results
On unseen motions & unseen subjects:



DS-Net : Results
On unseen motions & unseen subjects:



Conlusion
A note on the training data
• We observed that the dynamics dependent shapes had been partly

absorbed by the pose-dependent shape..!!

• ‘spine 2’ joint angles during
‘Jiggling on toes’ motion

• This means that our training data do not fully capture the observed
dynamics…



Conlusion
• A learning based method to the estimation of quality

dynamic skin deformation.

• The dynamic skin deformation has been modeled as a time 
series data, as a function of pose, body shape, and the 
results of previous time steps.
=>

• Also developed has been an AE, which builds a compact 
space for the intrinisic representation of DS offset, allowing
a very efficient operation of the DSNet.

An LSTM based NN has been developed, trained on sequences of 
triangular meshes captured from real people.       



Many thanks to…

Kaifeng ZOU, Frederic CORDIER 


