

Parameters estimation using Kalman filtering for predictive simulation

Sergei Nikolaev

DA is a method to combine observations with a model to improve the model accuracy [M. Asch 2016]

We need DA to predict the state of the system and its future in a best possible way [M. Asch 2016]

 For prediction we rely on models, but when they are not periodically corrected they have a little value (inverse problem) [M. Asch 2016]

Well- and ill-posed problems

- A problem is well-posed if:
 - -Solution exists
 - -Solution is unique
 - -Solution depends continuously on the data

Inverse problems are usually ill-posed !!!

Methods

Statistical (Kalman filtering family)

Variational (3Dvar, 4Dvar)

Hybrid and others ...

Reference:

https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/

Robot, estimate positions and velocity

Photo and speed tracking elements to get information from real world

Estimation using Kalman filtering

Estimation using Kalman filtering

Formalization

Linear

Suppose we have iterative process

$$x_k = A * x_{k-1} + B * u_k + w$$
 $p(w) \sim N(0, Q)$

 $z_k = H * x_k + v$ $p(v) \sim N(0, R)$

where

- x unknown state of size n
- *u* input sequence
- z observations data of size m
- w process noise
- v observation noise

Nonlinear

The iterative process is

$$x_k = f(x_{k-1}, u_k, w) \qquad p(w) \sim N(0, Q)$$

 $z_k = h(x_k, v) \qquad p(v) \sim N(0, R)$

where

- x unknown state size n
- *u* input sequence
- z observations data size m
- w process noise
- v observation noise

Kalman filtering process

linear-quadratic estimation (linear system, quadratic cost)

 estimates unknown variables based on noisy observations which are sequentially acquired

Kalman filtering process

linear-quadratic estimation (linear system, quadratic cost)

Minimizing cost function:

Kalman filtering process

linear-quadratic estimation (linear system, quadratic cost)

Distribution Transformation

Distribution Transformation

Nonlinear Kalman filters

Transformation (simulation step) system linearization (EKF)

- -Main issue system complexity
 - 1. Multidimensional derivative (positions, {velocities}, material parameters, spring stiffness, {contact parameters})
 - 2. Iterative solvers processing
 - 3. Approximation accuracy (second order derivative)

Probabilistic distribution discretization (UKF, EnKF)

It is easier to approximate a known Gaussian distribution than an arbitrary nonlinear function/transformation

-Main issue - computation time

Transformation of Uncertainty

at least N+1 sample points for N-dimensional space

Order reduction

- **1. System model reduction**
 - + simple model (coarse mesh),
 - POD, wavelets, ...
- 2. Covariance matrix reduction
 - + simple model (coarse mesh), SVD, EOF, Monte-Carlo estimation
 - factorization, multiscale analysis,
- **3. Filtering loop improvement**

+ EnTKF

 wavelet rank reduction, Singular Evolutive Extended Kalman Filter – replace analysis matrix by a lower rank approximation

Covariance matrix reduction

 Singular value decomposition (SVD)

 Empirical orthogonal functions (EOFs)

Ν

r ≈N

 The basic functions are chosen to be different from each other and to account for as much variance as possible

Ensemble Transform Kalman filter (Idea)

Ensemble Transform Kalman filter (Tips and tricks)

Localization – to approximate covariance more precisely

- -Take observations close to estimated unknowns
- -All observations are local ??
- Inflation to prevent filter divergence
 - -Equivalent to process noise addition to increase uncertainty

Experimental setup

Experimental setup

Experimental setup

Cylinder Experiment Description

- Groundtruth model: 3cm diam. by 18 cm approx. 52000 el., NeoHookean material 8000 Pa, Poisson 0.49
- Periodic forces to simulate impact. First scenario bending, second scenario stretching
- Observed data 33 surface markers
- DA model: 3cm diam. by 18 cm approx.
 3000 el., StVK material
- Init modulus 4000 Pa, std 350
- Compare points of coarse mesh

Cylinder Experiment Results

Bending

Stretching

Cylinder Experiment Validation Results (1)

Bending

Cylinder Experiment Validation Results (2)

Bending

Stretching

Cylinder Experiment Performance Results

Cylinder Experiment Results

- Observed data 4 surface markers
- Another Init modulus 7000 Pa

Boundary conditions Experiment Description

- Groundtruth model: triangular prism 10cm by 14 cm by 18 cm, approx. 55000 el., StVK material 8000 Pa, Poisson 0.49
- Periodic forces to simulate impact.
- Several springs with shared parameters to simulate BCs
- Observed data observe anterior and superior surfaces in first scenario and only superior in the second one
- DA model 10cm by 14 cm by 18 cm, approx. 2200 el., StVK material
- Compare points of coarse mesh

BCs Experiment Results

BCs Experiment Validation Results (1)

Anterior and superior

Superior

BCs Experiment Validation Results (2)

Anterior and superior

Superior

BCs Experiment Performance Results

BCs Second Experiment Description

 Compared with previous one the idea is to split springs on regions

BCs Second Experiment Validation Results (1)

Anterior and superior

Superior

BCs Second Experiment Validation Results (2)

Anterior and superior

Superior

BCs Second Experiment Performance Results

Performance improvement

Data assimilation process is still not real-time but ...

Improving computational performance:

Parallel computation of sigma points/ensemble members

Preconditioning

GPU implementation of data assimilation

Delayed estimation

Delayed estimation

Update estimated parameters after prediction-correction (analysis) iteration

- Additional experiments before moving to real data
- More complex analysis of the corrected model
- Preconditioning

 Mark Asch, Marc Bocquet, Maelle Nodet – Data Assimilation. Methods Algorithms and Applications, 2016

2. Dan Simon – Optimal state Estimation, Kalman, H∞, and Nonlinear Approaches, 2006